
we are not obliged to limit the required solutions only to the class of continuous functions. 
From both theoretical considerations and analysis of the experimental data, it is well known 
(see, for example, [2]), that in the region between the center of the explosion and the per- 
turbation front, with defined conditions, strong discontinuities can originate. Under the 
conditions of the example chosen and within the framework of the approximations considered 
here, these discontinuities are not developed. 
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REPRESENTATION OF INTERACTION IN THE THEORY OF TURBULENCE 

G. A. Kuz'min and A. Z. Patashinskii UDC 532.517.4 

The concept that in a turbulent flow energy exchanges only take place of pulsa- 
tions of near scales is the basis of macroscopic theory of local turbulence struc- 
ture. Universality and similarity of small-scale statistical pulsations are in- 
ferred from the assumption that the energy exchange is of random character. In 
the Eulerian equations of motion, together with the interactions which implement 
the energy exchange between pulsations, there are fictitious interactions related 
to the transfer of pulsations of a given scale I by the pulsations of scales l' >> 
I. It was emphasized in [2, 3] that in the Eulerian description of turbulence 
the effect of transfer results in a strong statistical dependence of pulsations 
of different scales. Therefore, the universality and similarity of small-scale 
pulsations can be observed only in these variables in which there are no effects 
of pure transfer of some pulsations by the others. Qualitative considerations 
were therefore given in [1-3] on the need for describing small-scale pulsations 
in a reference system which is in motion at each point with all large-scale pulsa- 
tions. It is shown in the present article that such description of small-scale 
pulsations can be implemented with the aid of transfer representation similar to 
the representation of interaction in the quantum field theory [4]. Representation 
of interaction is of intermediate position between the Lagrangian and Eulerian 
descriptions of turbulence, since a transfer of a packet as an entity can be 
described in variables which are Lagrangian only as regards large-scale motions. 
Another way of eliminating transfer interactions is based on the introduction of 
nonsolenoid velocity as in [5]. From the physical point of view, the method 
employed in this article seems to be more appropriate. 

First, the case of the scalar field q~(x, t) is considered; its entire evolution in time 
is related to the transfer of the field ~ to the velocity field v(x, t). The part of the 
field ~ can be taken, for example, by the concentration of a passive admixture in a turbulent 
flow. The equation for ~ is 

Ocp/Ot + (vv)cp = O. (1)  

By integrating (1) with respect to time one obtains the integral equation 
t 

q~ (x, t) := r (x, to) - .[ d-r (v (x, .r) V) �9 (x, , ) .  
to 
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The solution of this equation can be written in the form of an iterative series 

~ (x, t) = L~ (x, t0)--= ~ + E (-- i F  .t" d~  (v (x, ~ )  V) d ~  . . .  
n = l  to to 

~ n - - t  ] 
. . .  [ dx~ (v (x, :~)  V) ~(x,  to)" 

(2) 

The integration with respect to all dr m can be extended to the entire interval (to, 
introducing the T-ordering operation [4]. By definition one has 

/(v (x, ~) V) (v (x, ~') V), if ~ > ~', 
r [ (v(x ,  ~) v) (v (x, "r v) = ((v(x, ~r') v) (v (x, ~)v), if ~' > ~ .  

t) by 

In the case of a large number of multiplicants the T-ordering operator arranges the noncom- 
muting operators (vV) in decreasing order of the time arguments from left to right. The 
operator L in the formula (2) can be written with the aid of the T-ordering operator as [4] 

L =  i +  nl J fd~l  . . . . . .  d~nr[(v(x,  xOV) �9 (v(x,~n) v)l = T e x p  - - y d ~ ( v ( x , ~ )  V) (3) 
n = t  te to t ,  

In  a c c o r d a n c e  w i t h  (2) t h e  o p e r a t o r  L l i n k s  t h e  v a l u e  o f  t h e  f u n c t i o n  ~ ( x ,  t )  a t  any 
time instant with its value at a constant time instant to. In this sense the operator L 
implements for Eq. (i) the transition to a representation similar to that of Heisenberg in 
quantum mechanics. If the field ~ is transformed according to the formula ~ (x, t) = L~(x, 
t), .then the field ~ becomes independent of time being equal to the value of the field ~ at 
the instant to. In the fluid flow the concentration of the admixture remains constant along 
the Lagrangian trajectories of the particles. The operator L can, therefore, also be under- 
stood in another sense. For any field ~(x, t) (which need not be a scalar one) the operator 
L describes the transition to the Lagrangian variables. The field ~ specified by 

~(x, t) = L-~(x, t), (41 
is a Lagrangian field. The assertion can also be proved in a different way. The field ~ is 
expanded in the Taylor series in t -- to, 

F~ (x, t) = (t to) n 

n=O nl Ot n t=to" (5)  

By using (4) the series (5) can be rewritten as 

,~o '~ -$/ + vv  ~p (x, t)it :t." (6) 

According to [6] the expression (6) is the Eulerian link between the field ~ and the La- 
grangian ~. 

The point x in (4) is the Eulerian coordinate for the field ~ and the Lagrangian one 
for the field 4. Usually, the relation between the Lagrangian and the Eulerian fields is 
given by 

~(~, t) = ~(a, t), 

t 
where a = x -- S v (a, ~) d% ~ is the Lagrangian velocity. Consequently, 

to 

is e q u a l  t o  t h e  L a g r a n g i a n  f i e l d  ~ a t  t h e  p o i n t  s h i f t e d  f rom t h e  o r i g i n a l  one  by 

Hence, one can obtain the properties of the operator L which are required below. 
arbitrary Lagrangian fields, then 

L (~ %3 = L(~) L(%), LC~) n = (I~) n. 

The relations 

the field ~ on the left 
t 

!' "yds. 

I f  a r e  

(7) 
(7) could also be proved directly from the definition of the operator L. 
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The operator L -~ inverse to L is now found. To this end one used the equation satis- 
fied by any Lagrangian field ~(x, t, to) [5], 

[a/ato + v(x, to)V ]~(x, t, to) = O. (8) 
Equation (8) results from the fact that the value of a Lagrangian field measured at the time 
instant t does not change if the initial values x, to are shifted along the Lagrangian tra- 
jectory. For t = to the field ~ is identical with the Eulerian field ~; therefore, the solu- 
tion of Eq. (8) can be written in a form similar to (2), 

(x, t, to) = t + ( _  ])n ff d~x (v (x, ~,) V) ~ dx,... 
n : t  t $ 

Tn--~ I ] 
. . .  ~ d~. (v(x ,~ . )V)  * (x ,  t). 

t 

The inversion of the integration limits produces 

t, to) = + (W) t). 
n = l  to ~ ~n--t 

The operation of T + ordering is now introduced. The operator T* arranges the operators (v7) 
in increasing order of time arguments from left to right. The sum of the series can be 
written as 

~" (x, t, to)~, L - I ~  (x, t) = T + exp d~v (x, x)V $ (x, t). (3)  

It should be observed that the sign in the index of the exponential is inverse to the loca- 
tion order of the operators in the terms of the expansion in the relation (2) and (9). 

Let the field ~ satisfy a more general equation than (i), namely, 

Oq/Ot + (vv)* = P(% V~), (10) 

where P is a polynomial in ~(x, t) and in its space~derivatives. An equation is now con- 
sidered which is satisfied by the Lagrangian field ~(x, t, to). By inserting (4) into (i0) 
one obtains 

O~/Ot = L-~P(L~, vL~). (11) 

By virtue of the relation (7), Eq. (ll) assumes the form 

O~/at  = P(~-~, L-1vL~). (12) 

Hence, it follows that if the~commutator of the derivative 7 and the operator L can be ig- 
nored, then the equation for ~ is reduced to 

o~/at = P(~", V~, (13) 
that is, in this case Eq. (13) is equivalent to (I0) with v = 0. The aomutators of the 
operator L and the derivatives are of the order of the quantity (t -- to)3vi/~x j. Therefore, 

the solutions of (12) are identical with those of Eq. (13) provided that the inequality 

It -- to] << ]grad v] -1, (14) 

is valid where [grad v] -x is on the order of magnitude of time in which two near points have 
had time to be separated by a considerable distance.~ This, however, does not imply that if 
(14) holds, then the statistical state of the field ~ is independent of v because, in general, 
the initial conditions for the field ~ depend on v. At the initial time instant the Lagrang- 
ian field ~ is identical with the Eulerian field ~. Therefore, the statistical state of the 
initial conditions of ~(x, t, to) can only be determined by the simultaneous moments of the 
Eulerian field ~(x, to). 

It will be shown that the simultaneous moments of the Eulerian field ~ are independent 
of v if the space and time scales of the field v are large compared with the characteristic 
scale of the field ~. First, a simple example is considered with the field v independent of 
x, t being a random vector with known statistical properties. In this case the transforma- 
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tion (4) describes a transition to another Galileo reference system which is in motion to- 
gether with the fluid with velocity v, 

r  t) = exp [ - - ( t  - -  to ) (vv) l r  t) = r  - -  v( t  - -  to), t). ( 1 5 )  

The averages of the Lagrangian field ~, 

~ = <~(x~, h ) . . . ~ ( x , ,  t=)) (16) 

are identical in this case with the averages of the field 4 ~ in the fluid at rest and are 
independent of v. The moments Gn of the Eulerian field 4 can be determined with the aid of 
(15) by averaging over the probability distribution of the vector v. Let the field ~ be 

statistically uniform. The simplest relation between the functions G n, Gn is by means of a 
Fourier representation in the space arguments. The transform (15) for the Fourier components 
of 4(k, t) is 

~(k,  t) = exp [ - - i k v ( t -  to)l~(k, t). 

Hence, one obtains 

Gn(kt, tt . . . .  k~, tn) = Z(m)G-"~(kt, h ,  �9 � 9  k~,  t~), (17) 

where a = s k i (t~i-- to); Z(a) = <exp (--ira)> is the characteristic function of the random vector 

V. For example, for a Gaussian v its characteristic function Zo is given by [7] 

Zo(= ) -----" exp [ - - i  (V/> = j  - -  (t/2) <v;v=> aj=~l. 

Moreover, if the probability distribution for v is isotropic, then < v> = O. 

<VjUm> = v ~ i m a n d Z o ( ~  ) = exp - - - ~ - v 0 ~  ]. 

In view of spatial uniformity one has ~ k i 0 Therefore, a= ~_~ k~Ti, where z = t. -- t 
4=I i=i I 1 n 

Hence, it follows that simultaneous moments of all orders of an Eulerian field 4 are identi- 
cal with the averages of the field ~ and are independent of v. For single-time averages one 

has e = 0, Z(0) = i, G n = G n- 

19 the derivation of (17) only the assumption on the statistical independence of the 
field 4 was used, which is identical with the field 4 ~ in the fluid at rest from the velocity 
field v. Therefore, the result in (17) does not depend on the actual form of the equation 
which describes the evolution of the field 4. The formula (.17) for a vector field u which 
satisfies the transport equation with v = const 

Ou/Ot + (vv)u = O, 

i n  t h e  c a s e  o f  n = 2 a n d  u n d e r  t h e  a s s u m p t i o n s  t h a t  t h e  d i s t r i b u t i o n  i s  n o r m a l  a n d  t h e  f i e l d s  
v, u(x, to) are statistically independent was obtained in [3]. 

Now let the field v depend on x, t. In a fluid turbulent flow as shown in [I] it can 
be expected that different in-scale motions are statistically independent. The same consid- 
erations, though we cannot claimtopossess a rigorous proof, can be employed in our case. Let 
the correlation time T c of a stationary random field 4~ t) in a fluid at rest be insignif- 
icant compared with the time in which the velocity v changes, and the correlation length r c 
of the field 4 ~ be small compared with the scales L of the velocity field v(x, t). The inter- 
action between the fields v, 4 can, in the main, be reduced to the transfer with no noticeable 
distortion of the wave packets of the field 4 and the field v. The evolution of the packets 
in a reference system which is in motion with the fluid is determined mainly by the nonlinear 
interaction P. In a reference system in motion the interaction between the field packets 4 
and the field v is small in the parameters rc/L and rcL/V. Therefore, the statistical depen~ 
dence of the packets of the field 4 on v is also weak. The simultaneous correlations of the 
field 4 which do not depend on transport with an accuracy up to small terms in re/L, TL/v 
are independent of v. 

Since Eq. (13) and the initial values for @ do not in the limit rc/L § 0 depend on v, 
the nonsimultaneous correlation functions for the field 4 under the condition (14) are inde- 
pendent of v and are equal to the correlation functions for the field 4 ~ in the fluid at 
rest. Thus, in the case under consideration the transformation (4) describes the transition 
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to the "representation of interaction": It eliminates the fictitious part of the interaction 
related to the pure transport of the wave packets of the field 9. If v contains harmonics 
of the same scales as 9, then in the transition to the representation of interaction only 
the large-scale component of the velocity v should be retained in the index of the T expo- 
nent in the formula (4). In this case the equation for the field ~ contains the interaction 
only with this component of the field v, which brings about the distortion of the packets for 
the field 9. A transformationof this kind is employed below in analyzing the statistical state 
of velocity pulsations in the inertia gap interval of the wave numbers. 

The nonsimultaneous elemeBts of the field ~ are now evaluated taking into account that 
the correlations of the field ~ in a liquid at rest are given. If all the differences be- 
tween the times t.. = It. -- t. ] and the distance xij " ]xi -- 3"x~'l in (16) are small compared 

13 1 3 
with the characteristic scales of the field v, then in evaluating th~ functions Gn one can 
disregard the dependence of the field v(x, t) on the coordinates and on time, and one can 
treat the field v as a random vector. This case was analyzed above. The function Z(~) in 
(17) should, in this case, be regarded as a single-point characteristic function of the 
field v. The simultaneous moments G n, Gn are equal. The nonsingular moments differ only 
slightly if the time differences t.. are small compared with (kvo) -I, where vo is the mean- 

13 
square pulsation of the vector v. The quantity (kvo] -* is of the order of magnitude of the 
time needed for the displacement of the wave packet with the characteristic wave number k by 
a distance of the order of k -~. If the correlations of the field ~ decay in a time much 
shorter than (kvo) -~, then the multiplier Z(a) in (16) can be disregarded. Of course, the 
transfer interactions are not essential for velocity pulsations in the viscous interval for 
asymptotically high wave numbers. In the interval of viscous dissipation of energy the char- 
acteristic decay time is r k ~ (vkl) -* For sufficiently high k the decay of the wave packets 
takes place earlier than their noticeable displacement. Therefore, for k >> vo/9 the trans- 
fer does not exert any effect on the dependence of the correlation functions of the velocity 
field on time. If our assumption of a sufficiently rapid decay of the wave packets is not 
satisfied for a field then the dependence of the Eulerian correlations on time can be fully 
determined for suitable high vo by the transport process. 

Let us suppose that the points x~, ..., Xn in (16) can be subdivided into two groups so 
that the distances between the points x.. within a group are small compared with the distance 

13 
R between the groups of points. The latter quantity is regarded as large if one compares it 
with the correlation radius of the field ~ and it is of comparable size with the character- 
istic scale of the field v. In this case, within each group of points one can introduce the 
general velocity v,, vl. The averages of the field ~ can be split into a product of average 
fields belonging to each of the group of points: 

<~'(x~, t~) . . .  ~(xn, t~)> = <~ (x~, t~) . . .  ~(x z, t,)) x <r t~) . . .  r t~)>, ( !8)  

where I + m = n. By applying to every average on the right of (18) the transform (15) with 
v~, vl, respectively, and by going over to the Fourier components as in (17) one obtains the 
formula 

Gn = Z (61, 6s) G~, (19) 

where6 I=~ kiti; 6~=~_7 kjtj; Z(61,6=) is the two-point characteristic function of the field v. 

The sum of the wave vectors vanishes within each group of points. Therefore, a,, 6a only 
depend on the time differences, the simultaneous moments G n, Gn being equal. A generaliza- 
tion of (19) to a greater number of points is obvious. 

The obtained results are now employed to study the time correlations of the velocity 
field in the inertia interval of the wave numbers. The 'similarity considerations [i, 8] 
enable one to assume that the lifetime of the wave packets within the inertia interval are 
as powers of the wave numbers, T k ~ k TM . If it is assumed that the mean velocity e of the 
energy dissipation is the only determining parameter of the pulsation state in the inertia 
interval, then by using dimensional concepts (see [i]) one obtains 

This time is considerable compared with the value (kvo) -~, where by vo one understands the 
characteristic pulsation rate from the energy containing interval. Therefore, the time 
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dependence of the correlation functions for the Eulerian velocity in the inertia interval is 
fully determined by transfer random motions of a large scale. The latter indicates that the 
transfer interactions result in a strong statistical dependence of pulsations of Eulerian 
velocity of substantially different scales (see [3]). It is shown that mutual transfers of 
vortices with considerably different scales can be eliminated by interaction representation, 
which for the field ~ is similar to (4). 

Let v(x, t) be an Eulerian velocity field. The Lagrangian field v is related to v by 
an expression similar to (4), 

v(x,  t) = r e x p  - Id ly (x ,  ~) v v(•  O. (2o)  
to 

The inverse transformation is given by the T+-exponent operator. It should be mentioned that 
the transition to the Lagrangian variables excludes the transfer of a material particle by 
motions of any scales. In our considerations the part of such a particle is taken by the 
wave packet. For motion of the scales l' >> I where I is the packet size, the wave packet 
can be regarded as a material point and one can, as regards these motions, proceed to the 
Lagrangian variables. In implementing this program in the coordinate space one has to expand 
the Eulerian velocity field into a complete system of functions of a wave packet kind and 
apply the transform (20) to each packet separately where in the index of the T exponent only 
the large-scale compared with the size of the packet component of the velocity field should 
be left. In eliminating pure transfer interactions the form of the wave packets is immateri- 
al. 

However, it is easier to start from the Navier--Stokes equation in its Fourier transform 
in the space variables, 

(O/Ot -+- vk 2) v i (k, t) = --  ikj [ d3qvj (q, t) vi (k --  q, t) -~ ikip (k, t). (21) 

The incompressibility equation for the field v given by 

kv(k, t) = 0 

enables one to express the Fourier component of the pressure field in terms of the velocity 
by means of 

p (k, t) = (kjkz/k 2) ~ d3qvj (q, t) vl (k --  q, t ) .  (22) 

The velocity V (k) (~, t) is now introduced; it contains the Fourier harmonics v(~ t) with 
the wave numbers ~ which are much smaller than k. For example, V is understood to be given 
by 

V(k) (• t) = exp(--%2• t), 

w h e r e  ~ >> 1.  I n  c o o r d i n a t e  r e p r e s e n t a t i o n  V i s  g i v e n  by 

V(h) (x, t) = [k/(2X ]r~)13 ~ dSx , exp [--  (k2/4~ ~) (x -- x') 2] v (x' ,  t), (23) 
v 

Tha t  i s ,  V i s  t h e  v e l o c i t y  w h i c h  smoothed  o v e r  a vo lume  much l a r g e r  t h a n  k - ~ .  The c o n t r i b u -  
t i o n  to the integrals (21) and (22) is now considered from the region of s m a l l  [ q l ,  [k -- q [ .  
Since the multiplier k.k~ is present the contribution to the integral (22) from the region 

3 
of small lql, I k -- ql is proportional to the gradient of the large-scale component of the 
velocity V (23); therefore, the contribution is small with respect to the parameter %-t. 
The contribution to the integral (21) from the region of small Ik - ql is also proportional 
to the gradient V. The contribution to the integral (21) from the region of lql << Ikl is 
of the order of magnitude of the velocity V and it is therefore also large. It was mentioned 
in [2] that this contribution describes a pure pulsation transfer of the scale k -~ by high- 
scale pulsations. 

The transition to the representation of interaction for the Fourier components of the 
velocity field can be described with the aid of the transform 
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where 

HI ('~) = t" d~• (~' "~) exp (-- gO~Ok). (25) 

To confirm the above, our considerations which resulted in (3) should be repeated for the 
transfer equation [i) in its Fourier representation. It will be shown that the equation for 
the field v determined by (24) contains no interactions related to mutual transfers of ver- 
tices whose scale differs by more than I times. Since the space gradient of the large-scale 
component of V is small, in a low approximation in I-~ the operator exp(-~,~/~k) in (25) can 
be replaced by unity. The transform (24) then assumes the form 

[ S ] v, (k, t) = exp -- ikj d'c ~ dauV~ 0r "c) "v, (k, t). (26) 
.I 

In this approximation the field v satisfies the incompressibility equation, 

kv(k, t) = O. (_27) 

By inserting (26) into (21) one has 

(O/Ot + vk 2) v~ (k, t) = -- ikj S dSq [i -- exp (--)~"q~lk2)] • 

{' 
• ~ (q, t)v'~ ( k - - q ,  t)exp i ~ d'~ S dau[q (v'q'(u'  T ) -  V 'k-r  (u, "c)) + (28) 

to 

+ k (v  - v + 0 

It can be shown that for finite Iq t '  I k - - q l  (this ensures a rapid convergence of the inte- 
gral with respect to d'q in the region of small lq], ]k -- ql) the index of the exponential 
in (28) is small in the paramete r 1 -~. Therefore, in a poor approximation in %-~ and by 
taking into account (27) one obtains for v the equation 

(O/Ot-J-vk~)v~(k,t)=--ikjA~t~dSq[i e x p ( _  x2q'\~ - (q, 0 (k- q, t), (29) 

where 
All = 8tz -- kik~/k ~. 

If one takes into account the subsequent terms of the expansion in %-~ this results in the 
appearance in the equation for v of nonlinearities of higher orders. The integral on the 
right of (29) is convergent in the region of q << k; therefore, there are no transfer inter- 
actions in this equation. 

An equation similar to (29) was employed in [2] to obtain an improved approximation for 
direct interactions. The same equation can also be employed to obtain a complete system of 
diagram equations for the statistical characteristics of the field v. To this end the 
Navier--Stokes (21) equation was employed directly in [8, 9] with a random external force. 
The assumption that the statistical characteristics of the Eulerian field v are similar is 
not inconsistent provided the prime apex has actually been shortened in the region in which 
the arguments of the lines belonging to it are appreciably different, that is, when the 
transfer interactions play an insignificant part. The transfer interactions can, for example, 
be ignored when small vortices arise and remain in between larger vortices, if this assump- 
tion is invalid, then the transfer interactions result in the integrals diverging in the 
region of low wave numbers. In this case, to study the similarity features one has to make 
use of Eq. (29) for semi-Lagrangian velocity v. The prime apex of Eq. ~29) diminishes rapidly 
outside the region in which its arguments are of the same order of magnitude and therefore no 
difficulties arise due to divergence. The problem now assumes the form similar to the prob- 
lems in the phase-transition theory formulated in [I0]. 

The general pattern of our considerations is now described to show how the similarity 
properties appear in the exact equations of the theory. The diagram technique for Eq. (29) 
and its analysis are similar to those in [8]. One adds to the right-hand side of Eq. (29) a 
random force with a nonvanishing spectrum only in the region of low wave numbers; one then 
proceeds to its Fourier representation with respect to time. By substituting in the mean 
field v the series-functions expansion in the external force and by adding partially the 
obtained series one arrives at the complete system of diagram equations for the spectral 
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tensor F, 
the equation for the vortex functions F [8, 9] 

the Green's tensor G, and for the vortex functions. Let us consider, for example, 

(30) 

in which the following notation has been introduced: 

A ~ ru~(k , ~, q, ~), 

-+- ~ Gu(k, o)), 

*----~ <=> F u ( k ,  (o), 

*~ PuL(k) = --(~/2)(kjA. § k~Au). 

It is assumed that the tensors F, G, F are homogeneous functions of their arguments of de- 
grees ~, ~, --7, respectively, 

(31) 
r u l  (k, ~, q, ~) = k ~ r ~ z  ~ --=-, 

The actual parameter in the expansion of the series (30) is ~ ~ FG2F=k~. Substituting C31) 
in any term of the series C30) and assuming that the main contribution to the integrals 
comes from the region in which the integration variables are on the order of magnitude of 
the outer lines one finds that all terms of the series are of the same degree of homogeneity 
as the left-hand side provided that N ~ const ~ I. This condition giw~s the following rela- 
tion between the indices ~, B, y, ~: 

2y--2~--8+=+3 =0. 

The formulas in [i] are satisfied for y = i, a = g = 2/3, 6 = 13/3o The case of y ~ I is 
consistent with Eq. (30) if, for example, the full vortex is large compared with the hunted 
one. Similar analysis holds also for other equations of the system. 

The part played by the parameter % is now discussed in some detail. For k = ~ one has 
V (k) (g, t) = 0 and the field v is identical with the Eulerian velocity v. For k = 0 the 
field v is the Lagrangian velocity. There is no applicability region for Eq. (29) in this 
case. One can ignore the higher-order nonlinearities in the equation for v if % is suffi- 
ciently large. It is assumed that this can be done for % > %o where %o >> I is a value. 
For % > ko the hunted apex in the diagram equations depends on the value of %. The solutions 
of the equations, namely the tensors F(k), G(X), F(%), can, in principle, be obtained from 
their values at % = ko by averaging over all transfers of pulsations from the scale interval 
(kok -~, %k-a). The tensors obtained by this averaging must satisfy the relation ~% = F(k). 
G=(k)F=(%)k3w(k) ~ i since the considerations which have led to the result ~ ~ I retain their 
validity. This is confirmed by a straightforward calculation, as in [ii], for the case of 

Thus, statistical characteristics of the semi-Lagrangian velocity are determined within 
the framework of the universal problem of strong interaction. Moments and response functions 
for the Eulerian velocity can be obtained with the aid of the formulas (17) and (19) in which 
the functions Gn, Gn are tensors of rank n. 
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RECONSTRUCTION OF TURBULENCE SPECTRUM FROM TRANSIENT 

CHARACTERISTICS OF A SHADOW-INSTRUMENT SIGNAL 

Yu. I. Kopilevich UDC 532.507 

With the investigation of turbulence using a shadow instrument with photoelectric 
recording, the statistical characteristics of the signal taken off from the instru- 
ment are used to obtain information on the statistics of the investigated medium 
[I, 2]. In situations where the investigated medium is moving perpendicular to 
the instrument axis (for example, with experiments in hydro- and aerodynamic tubes), 
it is convenient to use the transient characteristics of the signal. In the pres- 
ent article an investigation is made of the connection of the transient correla- 
tion function and the frequency spectrum of a shadow-instrument signal with the 
energy spectrum of the optical inhomogeneities in the medium; a method is given 
for reconstructing the spectrum of the inhomogeneities from the correlation func- 
tion or the transient spectrum of the signal. 

w Connection between the Correlation Function of the Signal and the Fourth Moment of the 
Light Field 

The general scheme of the shadow instrument is given in Fig. i. A coherent monochromatic 
light beam from the illuminator 1 passes through a layer of the investigated medium with 
thickness L, situated between the planes 2 and 3, and is reflected by the lens 4 on its focal 
plane 5. In the plane 5 (the shadow plane) there is a shadow diaphragm; the light passing 
through the shadow plane is collected by the lens 6 and sent to the photomultiplier 7. In 
what follows, by the "instrument signal" we shall understand the intensity of the light fal- 
ling on the photomultiplier (and not the photomultiplier current). 

We introduce the Cartesian coordinates x, y, z in such a way that the z axis will be 
directed along the axis of the light propagation; plane 2 corresponds to z = O, plane 3 to 
z = L. Let u(x, y, L, t) E u(x, t), x = (x, y) be the random distribution of the field at 
the plane 3 at the moment of time t. Then the instantaneous value of the signal of the 
instrument E(t) is [3] 
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